ar X iv : m at h / 01 05 15 1 v 1 [ m at h . A C ] 1 7 M ay 2 00 1 The Hilbert Series of Pfaffian Rings ⋆

نویسندگان

  • Sudhir R. Ghorpade
  • Christian Krattenthaler
  • C. Krattenthaler
چکیده

We give three determinantal expressions for the Hilbert series as well as the Hilbert function of a Pfaffian ring, and a closed form product formula for its multiplicity. An appendix outlining some basic facts about degeneracy loci and applications to multiplicity formulae for Pfaffian rings is also included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 01 13 9 v 2 [ m at h . FA ] 1 A ug 2 00 5 Stability of Adjointable Mappings in Hilbert C ∗ - Modules ∗

The generalized Hyers–Ulam–Rassias stability of adjointable mappings on Hilbert C∗-modules is investigated. As a corollary, we establish the stability of the equation f(x)∗y = xg(y)∗ in the context of C∗-algebras.

متن کامل

ar X iv : m at h / 01 05 23 2 v 1 [ m at h . N T ] 2 8 M ay 2 00 1 MODULAR CURVES OF GENUS 2

We prove that there are exactly 149 genus two curves C defined over Q such that there exists a nonconstant morphism π : X 1 (N) → C defined over Q and the jacobian of C is Q-isogenous to the abelian variety A f attached by Shimura to a newform f ∈ S 2 (Γ 1 (N)). We determine the corresponding newforms and present equations for all these curves.

متن کامل

ar X iv : m at h / 02 05 20 7 v 1 [ m at h . R T ] 1 9 M ay 2 00 2 Can p - adic integrals be computed ?

This article gives an introduction to arithmetic motivic integration in the context of p-adic integrals that arise in representation theory. A special case of the fundamental lemma is interpreted as an identity of Chow motives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008